Mass Transfer Studies in Shallow Bubble Column Reactors

نویسندگان

  • Raymond Lau
  • Hui Venus Lee
  • Tao Chen
چکیده

Mass transfer studies are carried out in a bubble column with an internal diameter of 14 cm and various static liquid heights. The mass transfer coefficient is evaluated by using an oxygen sorption method. A model considering the gas holdup flushing and the sensor response is used. The interfacial mass transfer area is determined according to the measured bubble size distribution. The liquid-side mass transfer coefficient is also estimated from the volumetric mass transfer coefficient and the interfacial mass transfer area found. Results show that the effect of static liquid height on gas-liquid mass transfer is primarily on the interfacial mass transfer area. The mass transfer process is also governed by the type of gas distributor used. A single nozzle distributor is not suitable for shallow bubble column operations due to the large initial bubbles and the large volume of dead zone generated. It is also found that the different dependence of the liquid-side mass transfer coefficient on the superficial gas velocity observed in the literatures is due to the different bubble rising regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eulerian simulation of bubble columns reactors and effect of various parameters on the gas holdup

Gas holdup and bubble size are important parameters for simulation and designing in bubble column reactors. Because based on these parameters, the available gas-liquid interfacial area is defined for mass transfer. In this paper, the results of applying magnetic fields on the velocity field and volume fraction of gas holdup are reported. Hydrodynamics of the bubble column in the reactors is inv...

متن کامل

Mass Transfer Phenomena and Hydrodynamics in Agitated Gas-Liquid Reactors and Bubble Columns at Elevated Pressures: State of the Art

All important studies on the influence of pressure on mass transfer phenomena in gas-liquid systems and reactors are reviewed critically. Points of agreement and conflict are indicated and discussed. It is concluded that: (1) the initial bubble size at a single orifice decreases with increasing pressure; (2) the gas-phase mass transfer coefficient kG is inversely proportional to the pressure to...

متن کامل

Investigation of Heat Transfer Parameters of a Bundle of Heaters in a Simple Bubble Column Reactor Using CFD Method

Bubble columns are gas- liquid contactors that are widely used in chemical and bio- chemical industries. High mixing that result in high heat and mass transfer rates are amongst their advantages. Heat transfer in a bubble column having a bundle of heaters investigated and the variation of heat transfer coefficient with variation in heaters pitch to diameter ratios in a bundle of heaters reporte...

متن کامل

Cutting bubbles using wire-mesh structures : direct numerical simulations

Bubble column reactors suffer from bubble coalescence resulting in a decreased mass transfer efficiency. In order to increase the mass transfer rate in bubble column reactors, a novel reactor is proposed, the Micro-Structured Bubble Column (MSBC). is novel reactor makes use of a wire-mesh serving the purpose of cuing bubbles into smaller bubbles. is increases the specific bubble surface area...

متن کامل

Cutting bubbles using wire-mesh structures : direct numerical simulations

Bubble column reactors suffer from bubble coalescence resulting in a decreased mass transfer efficiency. In order to increase the mass transfer rate in bubble column reactors, a novel reactor is proposed, the Micro-Structured Bubble Column (MSBC). is novel reactor makes use of a wire-mesh serving the purpose of cuing bubbles into smaller bubbles. is increases the specific bubble surface area...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012